Prediction Customer Loyalty Using Random Forest Algorithm on Shopee Reviews
DOI:
https://doi.org/10.31294/p.v27i1.7940Keywords:
Customer loyalty, E-commerce, Prediction, Random Forest Algorithm, ShopeeAbstract
This research develops a Shopee customer loyalty prediction model using Random Forest algorithm, utilizing customer reviews from Google Play Store. One of the key issues in e-commerce is maintaining customer loyalty amidst intense competition, so it is important to identify loyal customers and understand the factors that influence their commitment. This study involves data collection through web scraping, data cleaning, loyalty labeling, and Random Forest-based prediction model building and evaluation. The evaluation process was conducted using a confusion matrix to measure accuracy, precision, recall, and F1-score. The model classified customers into loyal, neutral, and disloyal categories, with an overall accuracy of 97%. The model showed precision, recall, and F1-score of 0.98 for loyal customers, and 0.99, 1.00, and 0.99 for disloyal customers. However, identification of neutral customers is still a challenge, with precision, recall, and F1-score of 0.92, 0.85, and 0.88, respectively. The results of this study provide strategic insights for Shopee in improving customer retention strategies and demonstrate the effectiveness of the Random Forest algorithm in analyzing review data.
References
Adi Ahdiat. (2024, January 15). Retrieved January 8, 2025, from Katadata.co.id website: https://databoks.katadata.co.id/infografik/2024/01/15/5-e-commerce-dengan-pengunjung-terbanyak-sepanjang-2023
Alkhairi, P., Windarto, A. P., & Efendi, M. M. (2024). Optimasi LSTM Mengurangi Overfitting untuk Klasifikasi Teks Menggunakan Kumpulan Data Ulasan Film Kaggle IMDB. Technology and Science (BITS), 6(2). https://doi.org/10.47065/bits.v6i2.5850
Anggarda, M. F., Kustiawan, I., Nurjanah, D. R., & Hakim, N. F. A. (2023). Pengembangan Sistem Prediksi Waktu Penyiraman Optimal pada Perkebunan: Pendekatan Machine Learning untuk Peningkatan Produktivitas Pertanian. Jurnal Budidaya Pertanian, 19(2), 124–136. https://doi.org/10.30598/jbdp.2023.19.2.124
Apriliansyah, R. D. R., Astuti, R., Prihartono, W., & Hamonangan, R. (2025). Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Pengunjung Di Pantai Kejawanan. Jurnal Informatika Dan Teknik Elektro Terapan, 13(1). https://doi.org/10.23960/jitet.v13i1.5774
Asri, Y., Suliyanti, W. N., Kuswardani, D., & Fajri, M. (2022). Pelabelan Otomatis Lexicon Vader dan Klasifikasi Naive Bayes dalam menganalisis sentimen data ulasan PLN Mobile. PETIR, 15(2), 264–275. https://doi.org/10.33322/petir.v15i2.1733
Azmi, B. N., Hermawan, A., & Avianto, D. (2023). Analisis Pengaruh komposisi data training dan data testing Pada penggunaan PCA Dan Algoritma decision tree untuk KLASIFIKASI Penderita Penyakit liver. JTIM: Jurnal Teknologi Informasi dan Multimedia, 4(4), 281-290. https://doi.org/10.35746/jtim.v4i4.298
Fathoni, M. F. N., Puspaningrum, E. Y., & Sihananto, A. N. (2024). Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM. Jurnal Informatika Dan Sains Teknologi, 1(3), 62–76. https://doi.org/10.62951/modem.v1i3.112
Ferdyandi, M., Setiawan, N. Y., & Bachtiar, F. A. (2022). Prediksi Potensi Penjualan Makanan Beku berdasarkan Ulasan Pengguna Shopee menggunakan Metode Decision Tree Algoritma C4.5 dan Random Forest (Studi Kasus Dapur Lilis) Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 6(2), 588-596. Retrieved from https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/10560
Fitri, D. A., & Damayanti. (2024). Komparasi Algoritma Random Forest Classifier Dan Support Vector Machine Untuk Sentimen Masyarakat Terhadap Pinjaman Online Di Media Sosial. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 9(4), 2018–2029. https://doi.org/10.29100/jipi.v9i4.5608
Larasati, F. A., Ratnawati, D. E., & Hanggara, B. T. (2022). Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 6(9), 4305-4313. Retrieved from https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/11562
Masripah, S., & Wulandari, D. A. N. (2024). Analisa Online Customer Review (OCR) Menggunakan Algoritma Naive Bayes berbasis Particial Swarm Optimization (PSO). In Jurnal (Vol. 6). Retrieved from http://ejournal.bsi.ac.id/ejurnal/index.php/infortech59
Muktafin, E. H., Kusrini, & Luthfi, E. T. (2020). Analisis Sentimen pada Ulasan Pembelian Produk di Marketplace Shopee Menggunakan Pendekatan Natural Language Processing. Jurnal Eksplora Informatika, 10(1), 32–42. https://doi.org/10.30864/eksplora.v10i1.390
Mustafa, W. F., Hidayat, S., & Fudholi, D. H. (2024). Prediksi Retensi Pengguna Baru Shopee Menggunakan Machine Learning. JURNAL Media Informatika Budidarma, 8(1), 612-623. https://doi.org/10.30865/mib.v8i1.7074
Nafisyah, S., & Sulistiyowati, R. (2024). Analisis Sentimen Ulasan Produk Toko Online Esrocte untuk Peningkatan Pelayanan Menggunakan Algoritma Naïve Bayer Blantika: Multidisciplinary Journal, 2(8). https://doi.org/10.57096/blantika.v2i8.189
Nurohanisah, S., Astuti, R., & Basysyar, F. M. (2024). Deteksi Berita Palsu Menggunakan Algoritma Random Forest. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 422-428. https://doi.org/10.36040/jati.v8i1.8418
Oktavia, V. D., Sarsono, & Marwati, F. S. (2022). Loyalitas pelanggan ditinjau dari pelayanan, kepuasan dan kepercayaan pada CV cipta kimia sukoharjo. Jurnal ilmiah edunomika, 6(1), 540. https://doi.org/10.29040/jie.v6i1.4656
Permana, N. A., & Bunyamin, H. (2024). Perbandingan Logistic Regression dengan Random Forest dalam Memprediksi Sentimen Pada IMDb Moview Review. Jurnal STRATEGI-Jurnal Maranatha, 6(2), 391-399. Retrieved from https://www.strategi.it.maranatha.edu/index.php/strategi/article/view/538
Rahmadani, R., Rahim, A., & Rudiman. (2024). Analisis Sentimen Ulasan “Ojol The Game” Di Google Play Store Menggunakan Algoritma Naive Bayes dan Model Ekstraksi Fitur Tf-Idf Untuk Meningkatkan Kualitas Game. Jurnal Informatika Dan Teknik Elektro Terapan, 12(3). https://doi.org/10.23960/jitet.v12i3.4988
Sulistyawati, U. S., & Munawir. (2024). Membangun Keunggulan Kompetitif melalui Platform E-Commerce: Studi Kasus Tokopedia. Jurnal Manajemen Dan Teknologi (JMT), 1(1). https://doi.org/10.35870/jmt.vxix.776
Suryawan, M. A., Israwan, L. M. F., & Arland, F. (2024). Penerapan Algoritma Stemming Nazief-Adriani dengan Metode Cosine Similarity Dalam Aplikasi Ujian Esai. Prosiding SISFOTEK, 8(1), 237-243. Retrieved from https://seminar.iaii.or.id/index.php/SISFOTEK/article/view/495
Tambunan, S. F. A., Charos, W. A., & Nurbaiti. (2023). Analisis Perbandingan Sebelum Dan Sedudah Menggunakan Teknologi Informasi Dalam Bidang E-Commerce. Jurnal Akuntansi Keuangan Dan Bisnis, 1(3), 2023. https://doi.org/10.47233/jakbs.v1i3
Viona, V., Yohanes, K., Mega, L. S., Kurniawati, W., Farady Marta, R., & Isnaini, D. M. (2021). Narasi Shopee Dalam Mengembangkan Ekonomi Kreatif Berbasis Teknologi E-Commerce Di Era Moderen. AGUNA: Jurnal Ilmu Komunikasi, 2(1), 46-65. Retrieved from http://ejournal.amikompurwokerto.ac.id/index.php/AGUNA
Wardani, N. W., Arnidya, D. J., Putra, I. N. A. S., Desmayani, N. M. M. R., Nugraha, P. G. S. C., Hartono, E., & Mahendra, G. S. (2022). Prediksi
Yolanda, R., Hardilawati, W. L., & Hinggo, H. T. (2021). Pengaruh Perceived Quality, Customer Relationship Marketing Dan Store Atmosphere Terhadap Loyalitas Konsumen. ECOUNTBIS: Economics, Accounting and Business Journal, 1(1), 146-156. Retrieved from https://jom.umri.ac.id/index.php/ecountbis/article/view/224
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ferdi Saputra, Fersellia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Paradigma is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-sa/4.0/) , This license permits: Share — copy and redistribute the material in any medium or format for any purpose, even commercially, Adapt — remix, transform, and build upon the material for any purpose, even commercially.