Efficient Image Transmission for Autonomous Systems Using Residual Dense Feature Networks Over LoRa Networks

Authors

  • Muhamad Fadly Rizqy Praptawilaga Universitas Pendidikan Indonesia
  • Galura Muhammad Suranegara Universitas Pendidikan Indonesia
  • Arief Suryadi Satyawan National Research and Innovation Agency

DOI:

https://doi.org/10.31294/p.v27i1.7584

Keywords:

Autonomous Systems, LoRa communication, Image transmission, Image processing, Super resolution

Abstract

Autonomous systems face challenges in transmitting high-quality images over bandwidth-constrained networks like LoRa, which operates at data rates of 0.3–50 kbps. This study proposes the Residual Dense Feature Network (RDF Net), a super-resolution model designed to optimize image transmission within the constraints of LoRa networks. By leveraging Contrast-Aware Channel Attention (CCA), Enhanced Spatial Attention (ESA), Blueprint Separable Convolution (BSConv), and a progressive approach, RDF Net achieves 20x upscaling, enabling low-resolution images (40x40 pixels) to be reconstructed into high-resolution outputs (800x800 pixels) on a central server. Experimental evaluations demonstrate that Model-4, combining CCA and ESA, delivers state-of-the-art perceptual quality and structural fidelity, while Model-3, using ESA, offers a computationally efficient alternative for resource-constrained scenarios. Simulations of LoRa’s bandwidth limitations reveal that transmitting a single 40x40 image requires approximately 0.208–0.56 seconds at a data rate of 50 kbps. While this demonstrates the feasibility of near real-time communication, the trade-off between latency and visual fidelity remains a critical consideration, particularly for latency-sensitive applications. These findings underscore RDF Net’s potential to address the challenges of high-quality visual communication in bandwidth-constrained environments, paving the way for enhanced autonomous system applications. Further optimization, including adaptive compression strategies, and testing on actual LoRa hardware are recommended to validate its performance in real-world scenarios and explore its applicability to diverse autonomous systems.

References

Andonian, A., Park, T., Russell, B. C., Isola, P., Zhu, J.-Y., & Zhang, R. (2021). Contrastive Feature Loss for Image Prediction. 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 1934–1943. https://api.semanticscholar.org/CorpusID:244117332

Baghel, N., Dubey, S. R., & Singh, S. K. (2023). PTSR: Patch Translator for Image Super-Resolution. ArXiv, abs/2310.13216. https://api.semanticscholar.org/CorpusID:264405985

Bai, H., & Liang, X. (2024). A very lightweight image super-resolution network. Scientific Reports, 14(1), 13850. https://doi.org/10.1038/s41598-024-64724-y

Chen, Y., Liu, S., & Wang, X. (2020). Learning Continuous Image Representation with Local Implicit Image Function. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 8624–8634. https://api.semanticscholar.org/CorpusID:229221619

Chudasama, V., & Upla, K. (2020). E-ProSRNet: An enhanced progressive single image super-resolution approach. Computer Vision and Image Understanding, 200, 103038. https://doi.org/10.1016/j.cviu.2020.103038

Chudasama, V., Upla, K., Raja, K., Ramachandra, R., & Busch, C. (2022). Compact and progressive network for enhanced single image super-resolution—ComPrESRNet. The Visual Computer, 38(11), 3643–3665. https://doi.org/10.1007/s00371-021-02193-4

Dede, O. L., Jalajamony, H. M., & Fernandez, R. E. (2024). Image Transmission over LoRa-Based Networks: A Performance Study Using Image Compression and Reconstruction Methods. 2024 IEEE 21st Consumer Communications & Networking Conference (CCNC), 642–643. https://doi.org/10.1109/CCNC51664.2024.10454687

Haase, D., & Amthor, M. (2020). Rethinking Depthwise Separable Convolutions: How Intra-Kernel Correlations Lead to Improved MobileNets. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 14588–14597. https://doi.org/10.1109/CVPR42600.2020.01461

Ju, R.-Y., Chen, C.-C., Chiang, J.-S., Lin, Y.-S., Chen, W.-H., & Chien, C.-T. (2023). Resolution Enhancement Processing on Low Quality Images Using Swin Transformer Based on Interval Dense Connection Strategy. http://arxiv.org/abs/2303.09190

Kong, F., Li, M., Liu, S., Liu, D., He, J., Bai, Y., Chen, F., & Fu, L. (2022). Residual Local Feature Network for Efficient Super-Resolution. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 765–775. https://doi.org/10.1109/CVPRW56347.2022.00092

Kong, X., Zhao, H., Qiao, Y., & Dong, C. (2021). ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 12011–12020. https://doi.org/10.1109/CVPR46437.2021.01184

Li, G., & Zhu, Y. (2022). A Novel Dual Dense Connection Network for Video Super-resolution. CoRR, abs/2203.02723. https://doi.org/10.48550/ARXIV.2203.02723

Li, Z., Liu, Y., Chen, X., Cai, H., Gu, J., Qiao, Y., & Dong, C. (2022). Blueprint Separable Residual Network for Efficient Image Super-Resolution. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 832–842. https://doi.org/10.1109/CVPRW56347.2022.00099

Li, Z., Wang, C., Wang, J., Ying, S., & Shi, J. (2021). Lightweight adaptive weighted network for single image super-resolution. Computer Vision and Image Understanding, 211, 103254. https://doi.org/https://doi.org/10.1016/j.cviu.2021.103254

Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., & Timofte, R. (2021). SwinIR: Image Restoration Using Swin Transformer. 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 1833–1844. https://doi.org/10.1109/ICCVW54120.2021.00210

Liu, A., Li, S., & Chang, Y. (2022). Image super-resolution using progressive residual multi-dilated aggregation network. Signal, Image and Video Processing, 16(5), 1271–1279. https://doi.org/10.1007/s11760-021-02078-y

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2021). Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 9992–10002. https://doi.org/10.1109/ICCV48922.2021.00986

Murray, D., Koziniec, T., & deSouza, A. (2021). Exploring the Characteristics and Limits of LoRaWAN. 2021 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS), 110–116. https://doi.org/10.1109/IoTaIS53735.2021.9628831

Park, S., & Lee, E. (2021). One-to-many Approach for Improving Super-Resolution. ArXiv, abs/2106.10437. https://api.semanticscholar.org/CorpusID:235490650

Pham, V. D., Vishnevsky, V., Nguyen, D. C., & Kirichek, R. (2023). LoRa Mesh Network for Image Transmission: An Experimental Study (Y. Koucheryavy & A. Aziz, Eds.; pp. 606–617). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-30258-9_54

Qin, Y., Wang, J., Cao, S., Zhu, M., Sun, J., Hao, Z., & Jiang, X. (2024). SRBPSwin: Single-Image Super-Resolution for Remote Sensing Images Using a Global Residual Multi-Attention Hybrid Back-Projection Network Based on the Swin Transformer. Remote Sensing, 16(12). https://doi.org/10.3390/rs16122252

Shang, T., Dai, Q., Zhu, S., Yang, T., & Guo, Y. (2020). Perceptual Extreme Super Resolution Network with Receptive Field Block. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 1778–1787. https://doi.org/10.1109/CVPRW50498.2020.00228

Wang, Y., Liu, W., Sun, W., Meng, X., Yang, G., & Ren, K. (2023). A Progressive Feature Enhancement Deep Network for Large-Scale Remote Sensing Image Superresolution. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–13. https://doi.org/10.1109/TGRS.2023.3310518

Zhang, G., Weng, H., Liu, R., Zhang, M., & Zhang, Z. (2022). Point Clouds Classification of Large Scenes based on Blueprint Separation Convolutional Neural Network. 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2022, 525–530. https://doi.org/10.1109/CSCWD54268.2022.9776241

Zhong Xueliang and Luo, J. (2023). Classification-Based and Lightweight Networks for Fast Image Super Resolution. In A. and A. P. and J. C. Iliadis Lazaros and Papaleonidas (Ed.), Artificial Neural Networks and Machine Learning – ICANN 2023 (pp. 140–152). Springer Nature Switzerland.

Downloads

Published

2025-03-06

How to Cite

Praptawilaga, M. F. R. ., Suranegara, G. M. ., & Satyawan, A. S. . (2025). Efficient Image Transmission for Autonomous Systems Using Residual Dense Feature Networks Over LoRa Networks. Paradigma - Jurnal Komputer Dan Informatika, 27(1), 21-29. https://doi.org/10.31294/p.v27i1.7584