OPTIMALISASI ALGORITHMA K-MEANS MENGGUNAKAN METODE PSO PADA PENYAKIT STUNTING

stunting, optimasi k-means

Authors

  • Ulumuddin Ulumuddin UNIVERSITAS BINA SARANA INFORMATIKA PSDKU KOTA TEGAL

DOI:

https://doi.org/10.31294/conten.v4i1.4900

Keywords:

algorithm k-means pso stunting

Abstract

Stunting is a linear growth disorder in newborn babies which is caused by several factors, including LBW factors, low birth weight, mother's education, household income, and so on. So clustering is needed in this case to identify stunting with mild, severe or moderate clusters. In this study, researchers used the k-means algorithm to carry out clustering. So the results obtained were 41 heavy clusters, 109 medium clusters, while 50 light clusters. In order to find out the level of accuracy in the k-means algorithm optimized with PSO, from the results of trials conducted by researchers to optimize PSO k-means, PSO was proven to be able to increase the accuracy value of standard k-means with an accuracy value of 78.88%

References

Gladys Apriliana, (2018). Analisis faktot – factor resiko terhadap kejadian stunting pada balita 0 – 59 bulan di Negara berkembang dan asia tenggara . universitas Indonesia depok .

Uliyatul laeli 2019. Pemberdayaan masyarakat terhadap stunting. Universitas nahdhlotul ulama Surabaya

Awa ramdhani (2020) hubungan pengetahuan ibu dengan stunting.Universitas Muhammadiyah tasikmalaya.

Edwin Daniel osie (2018). “hubungan antara sikap dan pengetahuan ibu terhadap kejadian stunting pada nak baru masuk sekolah dasar di kecamatan nanggolo’

Han, Jiawet, Kamber Micheline, and Jian Pei. 2012. Data Mining Concepts and Techniques.

Hartigan, J. a., and M. a. Wong. 1979. “Algorithm AS 136: A K-Means Clustering Algorithm.” Journal of the Royal Statistical Society C 28(1): 100–108.

Bery, A J Micheal, and S Gordon Linoff. 2004. Data Mining.

Bsoul, Qusay, Juhana Salim, and Lailatul Qadri Zakaria. 2013. “An Intelligent Document Clustering Approach to Detect Crime Patterns.” Procedia Technology 11(Iceei): 1181–87. http://dx.doi.org/10.1016/j.protcy.2013.12.311.

Downloads

Published

2024-06-30

Issue

Section

Articles