Penerapan Algoritma K-Means Clustering Untuk Mengetahui Kemampuan Karyawan IT

Authors

  • Dina Zakiyah Program Studi Sistem Informasi, Fakultas Teknologi Informasi, Universitas Nusa Mandiri
  • Nita Merlina Program Studi Sistem Informasi, Fakultas Teknologi Informasi, Universitas Nusa Mandiri
  • Nissa Almira Mayangky Program Studi Teknologi informasi, Fakultas Teknik dan Informatika, Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.31294/coscience.v2i1.623

Keywords:

K-Means Clustering, Ability, Employees

Abstract

Assessment of the ability of IT employees is very necessary to determine the ability of employees to work so that it can be a reference and evaluation for the future. Therefore, we need a technique that can group the employee's ability to determine the employee's ability using the K-Means Clustering Algorithm method. The data grouping is done in several stages, namely, inputting data into Ms. Excel based on the results of data collection through Google Forms, processing and testing with the K-Means Clustering Algorithm, analysis of results, and grouping employee data with excellent, good, adequate, poor, and very poor skills. From the results of the tests that have been carried out, it is obtained 5 clusters with 2 iterations, namely employees with excellent abilities consisting of 2 members, employees with good abilities consisting of 2 members, employees with sufficient abilities consisting of 1 member, employees with less ability consisting of 2 members. , and employees with less ability consist of 3 members. Based on the results of research conducted at PT. Loka Citra Media, the application of the K-Means Clustering Algorithm can be used to identify and classify IT employees' abilities for the purpose of evaluating employees and forming project teams. The grouping of data obtained from research results and can be considered for evaluating the performance of IT employees with an accuracy value of 40%. The more criteria, the better the results will be obtained.

References

Agilhandani, A. D., Kurniawati, A., & Widyastuti, L. (2018). Pengelompokkan Profil Work Readiness Mahasiswa Teknik Industri Universitas Telkom Menggunakan Data Mining Berbasis Algoritma K-Means Clustering. Jurnal Metris, 19, 123–130.

Arifin, M. B., Pandowo, M., Kerja, P. L., Kerja, K., Karakteristik, D. A. N., Terhadap, I., Karyawan, K., Pt, P., & Finance, B. (2020). Peran Lingkungan Kerja, Kemampuan Kerja, Dan Karakteristik Individu Terhadap Kinerja Karyawan Pada Pt. Buana Finance Tbk. Cabang Manado. Jurnal EMBA: Jurnal Riset Ekonomi, Manajemen, Bisnis Dan Akuntansi, 8(4), 31–40. https://doi.org/10.35794/emba.v8i4.30437

Muhammad, A., & Muhammad, N. (2020). Data Mining Algoritma dan Implementasi (U. I. Ratih (ed.); I). Andi.

Munti, N. Y. S., Nurcahyo, G. W., & Santony, J. (2018). Analisis Dan Penerapan Data Mining Untuk Menentukan Gaji Karyawan Tetap Dan Karyawan Kontrak Menggunakan Algoritma K-Means Clustering ( Studi Kasus Di Pt Indomex Dwijaya Lestari ). JITI, Vol. 1, No. 1, Maret 2018.

Purba, W., Siawin, W., & Hardih. (2019). Implementasi Data Mining Untuk Pengelompokkan Dan Prediksi Karyawan Yang Berpotensi Phk Dengan Algoritma K-Means Clustering. Jurnal Sistem Informasi Dan Ilmu Komputer Prima(JUSIKOM PRIMA), 2(2), 85–90. https://doi.org/10.34012/jusikom.v2i2.429

Putri, R., & Utami, K. B. (2020). Kemampuan Kerja Karyawan dan Tunjangan Kesejahteraan Terhadap Prestasi Kerja Karyawan Pada Bengkel Betawi Diesel. Mabiska Jurnal, 5(2), 1–15.

Rerung, R. R. (2020). Algoritma dan Struktur Data Untuk Perguruan Tinggi (Alfioni (ed.)). Insan Cendekia Mandiri. https://books.google.co.id/books?id=-3UCEAAAQBAJ&pg=PA1&dq=definisi+algoritma&hl=id&newbks=1&newbks_redir=0&sa=X&ved=2ahUKEwiAuO_G-ozxAhVm63MBHVu5BMwQ6AEwA3oECAcQAg#v=onepage&q=definisi algoritma&f=false

Rustam, S. (2020). PENERAPAN OPTIMASI JUMLAH KLUSTER PADA KMEANS UNTUK PENGELOMPOKAN KELAS MATA KULIAH KOSENTRASI MAHASISWA SEMESTER AKHIR. 5(1), 1–4.

Setiawan, S. (2019). Analisis Cluster Menggunakan Algoritma K-Means Untuk Mengetahui Kemampuan Pegawai Dibidang It Pada Cv . Roxed Ltd. Jurnal Pelita Informatika, 18, 80–86. https://ejurnal.stmik-budidarma.ac.id/index.php/pelita/article/view/1142

Wahyudi, M., Masitha, Saragih, R., & Solikhun. (2020). Data Mining Penerapan Algoritma K-Means Clustering dan K-Medoids Clustering (J. Simarmata (ed.); 1st ed.). Yayasan Kita Menulis. https://books.google.co.id/books?id=wQnhDwAAQBAJ&newbks=1&newbks_redir=0&printsec=frontcover&dq=ebook+2020+data+mining+studi&hl=id&redir_esc=y#v=onepage&q&f=false

Downloads

Published

2022-01-28